225. В окружности, радиус которой 1,4, определите расстояние от центра до хорды, если она отсекает дугу в
120^{\circ}
.
Ответ. 0,7.
Указание. Катет, лежащий против угла в
30^{\circ}
, равен половине гипотенузы.
Решение. Пусть
M
— основание перпендикуляра, опущенного из центра
O
на хорду
AB
. Тогда
OM
— катет прямоугольного треугольника
OMA
, лежащий против угла в
30^{\circ}
. Следовательно,
OM=\frac{1}{2}OA=0{,}7.


Источник: Рыбкин Н. А. Сборник задач по геометрии. — Ч. 1: Планиметрия. — М.: Учпедгиз, 1961. — № 6, с. 35