594. В параллелограмме
ABCD
сторона
AD
равна 6. Биссектриса угла
ADC
пересекает прямую
AB
в точке
E
. В треугольник
ADE
вписана окружность, касающаяся стороны
AE
в точке
K
и стороны
AD
в точке
T
,
KT=3
. Найдите угол
BAD
.
Ответ.
60^{\circ}
.
Решение. Прямые
AE
и
CD
параллельны, а
DE
— биссектриса угла
ADC
, поэтому
\angle AED=\angle CDE=\angle ADE
. Значит, треугольник
ADE
равнобедренный,
AD=AE
.
Пусть окружность касается основания
DE
равнобедренного треугольника
ADE
в точке
M
. Тогда
M
— середина
DE
. Обозначим
DM=x
. Тогда
DT=DM=x
,
AT=AD-DT=6-x
. Треугольник
ATK
подобен треугольнику
ADE
, поэтому
\frac{AT}{AD}=\frac{TK}{DE}
, или
\frac{6-x}{6}=\frac{3}{2x}
. Отсюда находим, что
x=3
. Тогда
DE=2x=6
, значит, треугольник
ADE
равносторонний. Следовательно,
\angle BAD=\angle EAD=60^{\circ}
.

Источник: Вступительный экзамен на химический факультет МГУ. — 1978, вариант 3, № 4
Источник: Нестеренко Ю. В., Олехник С. Н., Потапов М. К. Задачи вступительных экзаменов по математике. — М.: Наука, 1983. — с. 53
Источник: Гордин Р. К. ЕГЭ 2013. Математика. Задача C4. Геометрия. Планиметрия. — М.: МЦНМО, 2014. — № 14.39, с. 139