10416. В выпуклом пятиугольнике ABCDE
известно, что
\angle A=\angle C=90^{\circ},~AB=AE,~BC=CD,~AC=1.
Найдите площадь пятиугольника.
Ответ. \frac{1}{2}
.
Решение. Первый способ. Пусть
AB=AE=a,~CB=CD=b,~\angle ABC=\alpha
(рис. 1). Тогда
BE=a\sqrt2,~BD=b\sqrt2,~\angle EBD=\alpha-90^{\circ},
S_{ABCDE}=S_{\triangle ABE}+S_{\triangle CBD}+S_{\triangle EBD}=
=\frac{1}{2}a^{2}+\frac{1}{2}b^{2}+\frac{1}{2}\cdot a\sqrt2\cdot b\sqrt2\cdot\sin(\alpha-90^\circ)=\frac{1}{2}(a^{2}+b^{2}-2ab\cos\alpha).
С другой стороны, по теореме косинусов из треугольника ABC
получаем, что
a^{2}+b^{2}-2ab\cos\alpha=AC^{2}=1.
Следовательно, S_{ABCDE}=\frac{1}{2}
.
Второй способ. Поскольку сумма углов пятиугольника равна 540^\circ
, то \angle B+\angle E+\angle D=360^\circ
. Следовательно, на отрезке AC
найдётся такая точка X
, что углы ABX
и CBX
дополняют до 180^\circ
углы E
и D
соответственно (рис. 2).
Повернём треугольники ABX
и CBX
на -90^{\circ}
и 90^{\circ}
вокруг вершин A
и C
соответственно. Пусть точки Y
и Z
— образы точки X
при этих поворотах. Тогда YACZ
— прямоугольная трапеция, в которой высота AC
равна 1
и сумма оснований AY+CZ=AC
равна 1. Следовательно, площадь исходного пятиугольника равна площади трапеции и равна \frac{1}{2}
.
Автор: Блинков Ю. А.
Источник: Московская устная олимпиада по геометрии. — 2012, № 8, 10-11 классы
Источник: Журнал «Квант». — 2012, № 3, с. 16, М2262; 2012, № 5-6, с. 26, М2262
Источник: Задачник «Кванта». — М2262