10934. В треугольнике ABC
проведена высота BH
, точка O
— центр описанной около него окружности, R
— радиус. Найдите наибольший из углов BAC
и ACB
, выраженный в радианах, если известно, что R=\frac{6}{5}BH=4OH
. При необходимости округлите найденное значение до двух знаков после запятой.
Ответ. 0,81.
Решение. Без ограничения общности рассуждений можно считать, что \angle BAC\lt\angle ACB
, R=AO=BO=12
. Тогда по условию
BH=\frac{5}{6}R=10,~OH=\frac{1}{4}R=3.
В треугольнике BOH
известны все стороны, а его площадь равна
S=\sqrt{\frac{25}{2}\cdot\frac{1}{2}\cdot\frac{5}{2}\cdot\frac{19}{2}}=\frac{5\sqrt{95}}{4}.
Опустим из точки O
перпендикуляры OH_{1}
и OM
на прямую BH
и сторону AC
соответственно. Из треугольника BOH
найдём его высоту:
OH_{1}=\frac{2S}{BH}=\frac{2\cdot5\sqrt{95}}{4\cdot10}=\frac{\sqrt{95}}{4},
откуда MH=OH_{1}=\frac{\sqrt{95}}{4}
. По теореме Пифагора
OM^{2}=OH^{2}-MH^{2}=9-\frac{95}{16}=\frac{49}{16}=\left(\frac{7}{4}\right)^{2},
AM^{2}=AO^{2}-OM^{2}=12^{2}-\left(\frac{7}{4}\right)^{2}=\left(12-\frac{7}{4}\right)\left(12+\frac{7}{4}\right)=\frac{41\cdot55}{16}.
Тогда AM=MC=\frac{\sqrt{41\cdot55}}{4}
. Наконец,
\angle ACB=\angle HCB=\arctg\frac{BH}{HC}=\arctg\frac{10\cdot4}{\sqrt{41\cdot55-\sqrt{95}}}=0{,}81446...
Источник: Журнал «Квант». — 2018, № 8, с. 48
Источник: Математическая олимпиада МГУ «Покори Воробьёвы горы». — 2018, творческое задание, № 4