11175. В треугольнике ABC
угол C
равен 45^{\circ}
. Докажите, что
AB^{4}=(BC^{2}-AB^{2})^{2}+(AC^{2}-AB^{2})^{2}.
Решение. Обозначим BC=a
, AC=b
, AB=c
. По теореме косинусов
c^{2}=a^{2}+b^{2}-2ab\cos45^{\circ}=a^{2}+b^{2}-ab\sqrt{2},
откуда
a^{2}-c^{2}=ab\sqrt{2}-b^{2}~\mbox{и}~b^{2}-c^{2}=ab\sqrt{2}-a^{2}.
Следовательно,
(a^{2}-c^{2})^{2}+(b^{2}-c^{2})^{2}=(ab\sqrt{2}-b^{2})^{2}+(ab\sqrt{2}-a^{2})^{2}=
=(2a^{2}b^{2}+b^{4}-2ab^{3}\sqrt{2})+(2a^{2}b^{2}+a^{4}-2a^{3}b\sqrt{2})=
=a^{4}+b^{4}+2a^{2}b^{2}+2a^{2}b^{2}-2ab^{3}\sqrt{2}-2a^{3}b\sqrt{2}=
=(a^{2}+b^{2}-ab\sqrt{2})^{2}=(c^{2})^{2}=c^{4}.
Что и требовалось доказать.
Автор: Румянцева А.
Источник: Журнал «Квант». — 2004, № 1, с. 13, М1892; 2004, № 4, с. 25, М1892
Источник: Задачник «Кванта». — 2004, М1892, с. 13