11263. Точка M
лежит внутри треугольника ABC
. Обозначим расстояния от неё до вершин A
, B
и C
через R_{a}
, R_{b}
и R_{c}
соответственно, а расстояния до сторон BC
, AC
и AB
— через d_{a}
, d_{b}
и d_{c}
соответственно.
а) Докажите, что aR_{a}\geqslant bd_{b}+cd_{c}
.
б) (Неравенство Эрдёша—Морделла.) Докажите, что R_{a}+R_{b}+R_{c}\geqslant2(d_{a}+d_{b}+d_{c})
.
Решение. а) Обозначим BC=a
, AC=b
, AB=c
. Из вершин B
и C
опустим перпендикуляры BK
и CL
на прямую AM
. Пусть BK=x
, CL=y
. Тогда BC\geqslant x+y
, поэтому
\frac{1}{2}aR_{a}=\frac{1}{2}BC\cdot R_{a}\geqslant\frac{1}{2}(x+y)R_{a}=\frac{1}{2}xR_{a}+\frac{1}{2}yR_{a}=
=S_{\triangle AMB}+S_{\triangle AMC}=\frac{1}{2}cd_{c}+\frac{1}{2}bd_{b}.
Следовательно, aR_{a}\geqslant bd_{b}+cd_{c}
.
б) Далее будем рассматривать направленные отрезки. Пусть M'
— точка, симметричная точке M
относительно биссектрисы угла BAC
. Расстояния от точки M'
до сторон AB
и CD
равны d_{b}
и d_{c}
соответственно. Тогда, по доказанному в пункте а),
aR_{a}\geqslant bd_{c}+cd_{b},
поэтому
R_{a}\geqslant\frac{b}{a}d_{c}+\frac{c}{a}d_{b}.
Аналогично,
R_{b}\geqslant\frac{a}{b}d_{c}+\frac{c}{b}d_{a},~R_{c}\geqslant\frac{a}{c}d_{c}+\frac{b}{c}d_{b}.
Значит,
R_{a}+R_{b}+R_{c}\geqslant\left(\frac{b}{a}d_{c}+\frac{c}{a}d_{b}\right)+\left(\frac{a}{b}d_{c}+\frac{c}{b}d_{a}\right)+\left(\frac{a}{c}d_{c}+\frac{b}{c}d_{b}\right)=
=d_{a}\left(\frac{c}{b}+\frac{b}{c}\right)+d_{b}\left(\frac{c}{a}+\frac{a}{c}\right)+d_{c}\left(\frac{a}{b}+\frac{b}{a}\right)\geqslant2d_{a}+2d_{b}+2d_{c}=2(d_{a}+d_{b}+d_{c}).
Что и требовалось доказать.
Примечание. См. статью В.В.Прасолова «Используя площадь», Квант, 1986, N5, с.16-19, 43.
Источник: Кокстер Г. С. М. Введение в геометрию. — М.: Наука, 1966. — с. 24, упражнение 4
Источник: Избранные задачи из журнала «American Mathematical Monthly» / Пер. с англ. Ю. А. Данилова, под ред. В. М. Алексеева. — М.: Мир, 1977. — № 113, с. 41
Источник: Журнал «Квант». — 1986, № 5, с. 18-19, пример 8