11755. В треугольнике ABC
сторона AB
равна 1. Известно, что одна из биссектрис треугольника ABC
перпендикулярна одной из его медиан, а некоторая другая биссектриса перпендикулярна другой медиане. Чему может быть равен периметр треугольника ABC
?
Ответ. 2,5 или 5.
Решение. Исследуем, какими соотношениями связаны длины сторон треугольника, у которого одна из биссектрис перпендикулярна медиане, а некоторая другая биссектриса перпендикулярна другой медиане. Заметим, что биссектриса и медиана, выходящие из одной вершины, не могут быть перпендикулярны (лучи, содержащие медиану и биссектрису, проходят между сторонами угла треугольника, поэтому половина этого угла меньше 90^{\circ}
).
Пусть в треугольнике KLM
биссектриса KP
перпендикулярна медиане LN
, а Q
— точка их пересечения. Тогда KQ
— одновременно биссектриса и высота в треугольнике KLN
, поэтому KL=KN=a
и KM=2KL=2a
.
Пусть некоторая другая биссектриса этого треугольника перпендикулярна другой медиане. Возможны такие случаи.
1) Это биссектриса угла M
. Тогда она может быть перпендикулярна только медиане, выходящей из вершины K
, следовательно, по соображениям, приведённым выше, LM=2KM=4a
. Такого треугольника не существует, так как для него не выполняется неравенство треугольника: a+2a\lt4a
.
2) Биссектриса угла L
перпендикулярна медиане, выходящей из вершины M
. Тогда KL=2LM
, т. е. LM=\frac{a}{2}
. Этот случай тоже невозможен, так как \frac{a}{2}+a\lt2a
.
3) Биссектриса угла L
перпендикулярна медиане, выходящей из вершины K
. Тогда LM=2KL=2a
.
Таким образом, единственный возможный случай — равнобедренный треугольник, основание которого в 2 раза меньше боковой стороны. Если AB
— боковая сторона, то периметр треугольника ABC
равен
\frac{1}{2}+1+1=2{,}5.
Если же AB
— основание, то периметр равен
1+2+2=5.
Автор: Акопян А. В.
Автор: Блинков Ю. А.
Источник: Грибалко А. В., Медников Л. Э., Шаповалов А. В. XIX—XX турниры математических боёв имени А. П. Савина. — М.: МЦНМО, 2019. — № 272, с. 37