11865. Найдите угол при вершине B
треугольника ABC
и радиус описанной около треугольника окружности, если известно, что AC-BC=2
, AB=\sqrt{6}
и \angle C=60^{\circ}
.
Ответ. 75^{\circ}
, \sqrt{2}
.
Решение. На стороне AC
отложим отрезок CD=BC=2
. Тогда треугольник BCD
равносторонний, со стороной 2, а \angle ADB=120^{\circ}
. По теореме синусов \frac{AB}{\sin120^{\circ}}=\frac{BD}{\sin\angle A}
, откуда
\sin\angle A=\frac{BD\sin120^{\circ}}{AB}=\frac{2\cdot\frac{\sqrt{3}}{2}}{\sqrt{6}}=\frac{1}{\sqrt{2}}.
Угол A
острый как угол треугольника ABD
с тупым углом при вершине D
. Следовательно,
\angle A=45^{\circ},~\angle ABC=180^{\circ}-\angle C-\angle A=180^{\circ}-45^{\circ}-60^{\circ}=75^{\circ}.
Пусть R
— радиус описанной окружности треугольника ABC
. Тогда
R=\frac{AB}{2\sin\angle C}=\frac{\sqrt{6}}{2\frac{\sqrt{3}}{2}}=\sqrt{2}.
Источник: Готман Э. Г. Задачи по планиметрии и методы их решения. — М.: Просвещение, 1996. — с. 38