12395. У двух прямоугольных треугольников совпадают площади и периметры. Обязательно ли эти треугольники равны?
Ответ. Да.
Решение. Пусть a
и b
— катеты треугольника, P
— его периметр, S
— площадь. Тогда \frac{ab}{2}=S
и a+b+\sqrt{a^{2}+b^{2}}=P
. Перенеся во втором равенстве a+b
в правую часть и возведя в квадрат, получим
a^{2}+b^{2}=P^{2}-2P(a+b)+a^{2}+2ab+b^{2},
откуда a+b=\frac{P^{2}+4S}{2P}
. При этом ab=2S
.
Из теоремы, обратной теореме Виета следует, что a
и b
— корни квадратного уравнения x^{2}-\frac{P^{2}+4S}{2P}\cdot x+2S=0
.
По заданным площади и периметру коэффициенты определяются однозначно. Значит, катеты тоже определяются однозначно, и треугольники равны.
Источник: Олимпиада «Курчатов». — 2015-2016, заключительный этап, задача 1, 11 класс