12774. В равнобедренном треугольнике ABC
угол при вершине равен 30^{\circ}
. Точки A'
, B'
, C'
получаются отражением вершин относительно противоположных сторон. Докажите, что треугольник A'B'C'
равносторонний.
Решение. Первый способ. Пусть \angle BAC=30^{\circ}
, AC=AB=a
, AH
— высота треугольника ABC
. Тогда
\angle B'A'C'=\angle B'AC+\angle CAB+\angle BAC'=30^{\circ}+30^{\circ}+30^{\circ}=90^{\circ}.
Из равнобедренного прямоугольного треугольника B'AC'
находим, что B'C'=a\sqrt{2}
.
Из прямоугольного треугольника AHB
находим, что
AH=AC\cos\angle BAH=a\cos15^{\circ}=a\cdot\cos(30^{\circ}+45^{\circ})=\frac{a(\sqrt{6}+\sqrt{2})}{4}.
В треугольнике AA'C'
известно, что
AC'=AC=a,~AA'=2AH=\frac{a(\sqrt{6}+\sqrt{2})}{2},
\angle AA'C=\angle B'AC+\angle BAH=30^{\circ}+15^{\circ}=45^{\circ}.
По теореме косинусов
A'C'=\sqrt{AC'^{2}+AA'^{2}-2AC'\cdot AA'\cos45^{\circ}}=
=\sqrt{a^{2}+\frac{a^{2}(8+4\sqrt{3})}{4}-2a^{2}\cdot\frac{\sqrt{6}+\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2}}=
=a\sqrt{1+2+\sqrt{3}-\sqrt{3}-1}=a\sqrt{2}.
Аналогично, A'B'=a\sqrt{2}
. Следовательно, A'B'=A'C'=B'C'
, т. е. треугольник A'B'C'
равносторонний. Что и требовалось доказать.
Второй способ. Пусть \angle BAC=30^{\circ}
. Тогда из симметрии
\angle BAB'=\angle BAC+\angle B'AC=30^{\circ}+30^{\circ}=60^{\circ},
а так как AB'=AB
, то треугольник BAB'
равносторонний. Значит, A'B=AB=BB'
.
Поскольку
\angle A'BB'=\angle A'BC+\angle CBB'=75^{\circ}+15^{\circ}=90^{\circ},
треугольник A'BB'
прямоугольный, а так как A'B=BB'
, то он равнобедренный. Значит, \angle BB'A'=45^{\circ}
. Кроме того, B'C'\parallel BC
, поэтому
\angle BB'C'=\angle CBB'=15^{\circ}.
Тогда
\angle A'B'C'=\angle A'B'B+\angle BB'C'=45^{\circ}+15^{\circ}=60^{\circ}.
Аналогично получим, что \angle A'B'C'=60^{\circ}
. Следовательно, треугольник A'B'C'
равносторонний. Что и требовалось доказать.
Источник: Индийские математические олимпиады. — 1998, региональная олимпиада, задача 4