12826. Какой угол образуют часовая и минутная стрелки в 4 часа 12 минут?
Ответ.
54^{\circ}
.
Решение. Первый способ. В 12.00 каждая из стрелок направлена вертикально вверх. Найдём углы, которые каждая из стрелок составляет с этим положением в 4 часа 12 минут.
Часовая стрелка каждый час поворачивается на
30^{\circ}
, а за 12 минут повернётся ещё на
\frac{1}{5}\cdot30^{\circ}=6^{\circ}.

Таким образом, она составит с вертикалью угол, равный
126^{\circ}
.
Минутная стрелка за 12 минут повернётся на пятую часть от своего полного оборота, т. е. на
\frac{1}{5}\cdot360^{\circ}=72^{\circ}.

Следовательно, искомый угол равен
126^{\circ}-72^{\circ}=54^{\circ}.

Второй способ. В 4.00 минутная стрелка направлена вверх, а часовая прошла от вертикального положения 20 минутных делений. Ещё за 12 минут минутная стрелка повернётся на 12 делений, а часовая — на одно минутное деление, так как 12 минут составляют пятую часть часа. Значит, между часовой и минутной стрелкой
21-12=9
минутных делений. Учитывая, что одно минутное деление составляет
\frac{1}{60}\cdot360^{\circ}=6^{\circ},

получим, что угол между стрелками равен
6^{\circ}\cdot9=54^{\circ}.

Источник: Московская математическая регата. — 2018-2019, первый тур, № 2, 7 класс