12953. Точка A
расположена между двумя параллельными прямыми на расстоянии a
и b
от них. Эта точка служит вершиной угла, равного \alpha
, всевозможных треугольников, две другие вершины которого лежат по одной на данных прямых. Найдите наименьшее значение площади таких треугольников.
Ответ. ab\ctg\frac{\alpha}{2}
.
Решение. Пусть точка P
лежит на прямой l
, а точка Q
— на прямой m
, параллельной l
, причём AX=a
и AY=b
— перпендикуляры, опущенные из точки A
на прямые l
и m
соответственно. Обозначим \angle PAX=\varphi
. Тогда
\angle QAY=180^{\circ}-\alpha-\varphi,~AP=\frac{a}{\cos\varphi},~AQ=\frac{b}{\cos(180^{\circ}-\alpha-\varphi)}=-\frac{b}{\cos(\alpha+\varphi)}.
Значит,
S_{\triangle PAQ}=\frac{1}{2}AP\cdot AQ\sin\alpha=-\frac{ab\sin\alpha}{2\cos\varphi\cos(\alpha+\varphi)}=-\frac{ab\sin\alpha}{\cos\alpha+\cos(2\varphi+\alpha)}.
Это выражение минимально, если 2\varphi+\alpha=180^{\circ}
, т. е. при \varphi=90^{\circ}-\frac{\alpha}{2}
. При этом искомая минимальная площадь равна
S_{\min}=-\frac{ab\sin\alpha}{\cos\alpha-1}=\frac{2ab\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\sin^{2}\frac{\alpha}{2}}=ab\ctg\frac{\alpha}{2}.
Источник: Шарыгин И. Ф. Геометрия: 9—11 кл.: От учебной задачи к творческой: Учебное пособие. — М.: Дрофа, 1996. — № 643, с. 81