13562. Формула площади треугольника по трём сторонам (формула Герона) имеет вид S=\sqrt{p(p-a)(p-b)(p-c)}
, где a
, b
и c
— стороны треугольника, а p
— его полупериметр (см. задачу 2730). Найдите аналогичную формулу площади треугольника по его медианам m_{a}
, m_{b}
, m_{c}
и их полусумме m
.
Ответ. S=\frac{4}{3}\sqrt{m(m-m_{a})(m-m_{b})(m-m_{c})}
.
Решение. Пусть медианы AA_{1}=m_{a}
, BB_{1}=m_{b}
, CC_{1}=m_{c}
треугольника ABC
, пересекаются в точке M
. Достроим треугольники BMC
, AMC
и AMB
до параллелограммов BMCX
, AMCY
и AMBZ
соответственно.
Рассмотрим треугольник BMX
со сторонами
BM=\frac{2}{3}m_{b},~CM=\frac{2}{3}m_{c},~MX=2MA_{1}=\frac{2}{3}m_{a}
и полупериметром
\frac{2}{3}\cdot\frac{m_{a}+m_{b}+m_{c}}{2}=\frac{2}{3}m.
Тогда по формуле Герона
S_{\triangle BMX}=\sqrt{\frac{2}{3}m\left(\frac{2}{3}m-\frac{2}{3}m_{a}\right)\left(\frac{2}{3}m-\frac{2}{3}m_{b}\right)\left(\frac{2}{3}m-\frac{2}{3}m_{c}\right)}=
=\frac{4}{9}\sqrt{m(m-m_{a})(m-m_{b})(m-m_{c})}.
Аналогично для площадей треугольников CMY
и AMZ
.
С другой стороны, три этих треугольника равновелики треугольникам BMC
, AMC
и AMB
соответственно. Следовательно,
S=S_{\triangle BMC}+S_{\triangle AMC}+S_{\triangle AMB}=S_{\triangle BMX}+S_{\triangle CMY}+S_{\triangle MXZ}=3S_{\triangle BMX}=
=3\cdot\frac{4}{9}\sqrt{m(m-m_{a})(m-m_{b})(m-m_{c})}=\frac{4}{3}\sqrt{m(m-m_{a})(m-m_{b})(m-m_{c})}.
Источник: Журнал «Crux Mathematicorum». — 1995, № 9, задача 56, с. 89