14036. Даны четырёхугольники ABCD
и A_{1}B_{1}C_{1}D_{1}
. Докажите, что
\overrightarrow{AA_{1}}+\overrightarrow{BB_{1}}+\overrightarrow{CC_{1}}+\overrightarrow{DD_{1}}=\overrightarrow{AB_{1}}+\overrightarrow{BC_{1}}+\overrightarrow{CD_{1}}+\overrightarrow{DA_{1}}.
Решение. Пусть M
— точка пересечения диагоналей четырёхугольника, вершины которого — середины сторон четырёхугольника ABCD
, а M_{1}
— точка пересечения диагоналей четырёхугольника, вершины которого — середины сторон четырёхугольника TXYZ
. Докажите, что
\overrightarrow{MM_{1}}=\frac{1}{4}(\overrightarrow{AA_{1}}+\overrightarrow{BB_{1}}+\overrightarrow{CC_{1}}+\overrightarrow{DD_{1}})
и
\overrightarrow{MM_{1}}=\frac{1}{4}(\overrightarrow{AB_{1}}+\overrightarrow{BC_{1}}+\overrightarrow{CD_{1}}+\overrightarrow{DA_{1}})
(см. задачу 14035). Следовательно,
\overrightarrow{AA_{1}}+\overrightarrow{BB_{1}}+\overrightarrow{CC_{1}}+\overrightarrow{DD_{1}}=\overrightarrow{AB_{1}}+\overrightarrow{BC_{1}}+\overrightarrow{CD_{1}}+\overrightarrow{DA_{1}}.
Примечание. Утверждение верно и в случае, когда ABCD
и TXYZ
— пространственные четырёхугольники.
Источник: Мерзляк А. Г., Номировский В. М., Поляков В. М. Геометрия. 11 класс. Углублённый уровень. — М.: Вентана-Граф, 2020. — № 3.29, с. 28