2028. В треугольнике
ABC
известно, что
AB=3
, высота
CD=\sqrt{3}
. Основание
D
высоты
CD
лежит на стороне
AB
и
AD=BC
. Найдите
AC
.
Ответ.
\sqrt{7}
.
Указание. Обозначьте
BC=AD=a
и воспользуйтесь теоремой Пифагора.
Решение. Обозначим
BC=AD=a
. По теореме Пифагора
BC^{2}=BD^{2}+CD^{2},~\mbox{или}~a^{2}=(3-a)^{2}+(\sqrt{3})^{2}.

Отсюда находим, что
a=2
. Следовательно,
AC^{2}=AD^{2}+CD^{2}=4+3=7.

Источник: Вступительный экзамен на геологический факультет МГУ. — 1977, № 2, вариант 1
Источник: Нестеренко Ю. В., Олехник С. Н., Потапов М. К. Задачи вступительных экзаменов по математике. — М.: Наука, 1986. — с. 67