2119. Параллелограмм ABCD
с углом \angle BAD=\arcsin\frac{1}{3}
и ромб BCFE
с острым углом CBE
расположены так, что точки E
и F
лежат на продолжении стороны AD
за точку D
. Площадь четырёхугольника DBCE
составляет \frac{3}{4}
площади параллелограмма. Найдите углы ромба.
Ответ. \frac{\pi}{6}-\arcsin\frac{1}{3}
; \frac{5\pi}{6}+\arcsin\frac{1}{3}
.
Указание. Применив формулу площади трапеции, докажите, что DE=\frac{1}{2}AD
.
Решение. Обозначим через h
высоту параллелограмма, опущенную на сторону AD
, AD=BC=BE=CF=a
, DE=x
. Тогда
S_{DBCE}=\frac{1}{2}(BC+DE)\cdot h,~S_{ABCD}=ah.
Поэтому \frac{(a+x)h}{2}=\frac{3ah}{4}
. Отсюда находим, что x=\frac{a}{2}
. Тогда в треугольнике ABE
AE=AD+DE=\frac{3a}{2},~BE=a,~\sin\angle BAE=\frac{1}{3}.
По теореме синусов находим, что \sin\angle ABE=\frac{1}{2}
. Если
\angle CFE=\angle BEA=180^{\circ}-\angle ABE-\angle BAE=180^{\circ}-150^{\circ}-\arcsin\frac{1}{3}=
=30^{\circ}-\arcsin\frac{1}{3}~\mbox{и}~\angle ABE=150^{\circ},
то
\angle BEF=180^{\circ}-\angle CFE=150^{\circ}+\arcsin\frac{1}{3}.
Если \angle ABE=30^{\circ}
, то
\angle CFE=150^{\circ}-\arcsin\frac{1}{3}\gt90^{\circ},
что противоречит условию.
Источник: Вступительный экзамен в МФТИ. — 1982, билет 2, № 3
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 82-2-3, с. 240