2337. На стороне CD
ромба ABCD
нашлась такая точка K
, что AD=BK
. Пусть F
— точка пересечения диагонали BD
и серединного перпендикуляра к стороне BC
. Докажите, что точки A
, F
и K
лежат на одной прямой.
Решение. ABKD
— равнобедренная трапеция. Точка G
пересечения её диагоналей лежит на серединном перпендикуляре к основанию AB
. В силу симметрии ромба ABCD
относительно диагонали BD
, точка G
лежит также на серединном перпендикуляре к BC
, т. е. совпадает с точкой F
.
Автор: Женодаров Р. Г.
Источник: Турнир городов. — 2007-2008, XXIX, осенний тур, младшие классы, основной вариант