3434. Стороны треугольника равны 10, 17 и 21. Найдите высоту треугольника, проведённую из вершины наибольшего угла.
Ответ. 8.
Решение. Пусть стороны AC
, AB
и BC
треугольника ABC
равны 10, 17 и 21 соответственно, AH
— высота опущенная на сторону BC
.
Первый способ. Поскольку BC
— наибольшая сторона треугольника, основание H
высоты, опущенной на эту сторону, лежит на отрезке BC
. Обозначим CH=x
. Тогда BH=BC-CH=21-x
.
Выражая по теореме Пифагора из прямоугольных треугольников ACH
и ABH
квадрат общего катета AH
, получим уравнение
10^{2}-x^{2}=17^{2}-(21-x)^{2},
из которого найдём, что x=6
. Следовательно,
AH=\sqrt{AC^{2}-CH^{2}}=\sqrt{100-x^{2}}=\sqrt{100-36}=8.
Второй способ. Пусть p
— полупериметр треугольника ABC
, p=\frac{10+17+21}{2}=24
. По формуле Герона
S_{\triangle ABC}=\sqrt{p(p-AC)(p-AB)(p-BC)}=\sqrt{24(24-10)(24-17)(24-21)}=
=\sqrt{24\cdot14\cdot7\cdot3}=3\cdot7\cdot4=84.
С другой стороны
S_{\triangle ABC}=\frac{1}{2}BC\cdot AH=\frac{1}{2}\cdot21\cdot AH=\frac{21}{2}AH.
Из равенства \frac{21}{2}AH=84
находим, что AH=8
.
Третий способ. По теореме косинусов
\cos\angle ACB=\frac{AC^{2}+BC^{2}-AB^{2}}{2AC\cdot BC}=\frac{100+441-289}{2\cdot10\cdot21}=\frac{3}{5}.
Тогда \sin\angle ACB=\frac{4}{5}
. Из прямоугольного треугольника ACH
находим, что
AH=AC\sin\angle ACB=10\cdot\frac{4}{5}=8.
Источник: Гордин Р. К. ЕГЭ 2010. Математика. Задача C4. Геометрия. Планиметрия. — М.: МЦНМО, 2010. — № 5.4, с. 39