3536. Докажите, что в любом треугольнике большей стороне соответствует меньшая высота.
Указание. Произведение основания на высоту для данного треугольника постоянно.
Решение. Пусть
a
и
b
— стороны треугольника,
h_{a}
и
h_{b}
— высоты, опущенные на эти стороны. Тогда
a\cdot h_{a}=b\cdot h_{b}
. Поэтому
\frac{h_{a}}{h_{b}}=\frac{b}{a}.

Следовательно, если
a\gt b
, то
h_{a}\lt h_{b}
.
Источник: Адамар Ж. Элементарная геометрия. — Ч. 1: Планиметрия. — М.: Учпедгиз, 1948. — № 20, с. 49
Источник: Моденов П. С. Сборник задач по специальному курсу элементарной математики. — М.: Советская наука, 1957. — № 24, с. 184
Источник: Сивашинский И. Х. Неравенства в задачах. — М.: Наука, 1967. — № 510, с. 47