3720. В трапецию с верхним основанием, равным 5, и боковой стороной, равной 6, можно вписать окружность и около неё можно описать окружность. Вычислите площадь пятиугольника, образованного радиусами вписанной окружности, перпендикулярными боковым сторонам трапеции, её нижним основанием и соответствующими отрезками боковых сторон.
Ответ.
\frac{7}{2}\sqrt{35}
.
Источник: Вступительный экзамен на геологический факультет МГУ. — 2000 (июль), вариант 2, № 6
Источник: Математика. Задачи вступительных экзаменов с ответами и решениями / Сост. Е. А. Григорьев. — М.: УНЦ ДО, 2004. — с. 39