4410. На плоскости даны точки A(1;2)
, B(2;1)
, C(3;-3)
, D(0;0)
. Они являются вершинами выпуклого четырёхугольника ABCD
. В каком отношении точка пересечения его диагоналей делит диагональ AC
?
Ответ. 1:3
, считая от точки A
.
Указание. Пусть M
— точка пересечения прямых AC
и BD
. Докажите, что \overrightarrow{MC}=3\overrightarrow{AM}
.
Решение. Поскольку прямые AC
и BD
не параллельны оси OY
, их уравнения можно найти в виде y=ax+b
. Подставив координаты точек A
и C
в это уравнение, получим систему
\syst{2=a+b\3=3a+b,\\}
из которой находим, что a=-\frac{5}{2}
, b=\frac{3}{4}
.
Аналогично получим уравнение прямой BC
: y=\frac{1}{2}x
.
Координаты точки M
пересечения прямых AC
и BD
находим из системы
\syst{y=-\frac{5}{2}x+\frac{9}{2}\\y=\frac{1}{2}x\\}~\Leftrightarrow~\syst{x=\frac{3}{2}\\y=\frac{3}{4}.\\}
Рассмотрим векторы \overrightarrow{AM}
и \overrightarrow{MC}
. Поскольку координаты вектора равны разностям соответствующих координат конца и начала, то
\overrightarrow{AM}=\left(\frac{3}{2}-1;\frac{3}{4}-2\right)=\left(\frac{1}{2};-\frac{5}{4}\right),~\overrightarrow{MC}=\left(3-\frac{3}{2};-3-\frac{3}{4}\right)=\left(\frac{3}{2};-\frac{15}{4}\right).
Из полученных равенств следует, что \overrightarrow{MC}=3\overrightarrow{AM}
. Значит, точка M
делит диагональ AC
в отношении 3:1
, считая от точки A
.
Источник: Вступительный экзамен на факультет почвоведения МГУ. — 2005 вариант 1, № 6
Источник: Вступительные экзамены и олимпиады по математике 2003—2005 гг. / Под общ. ред. И. Н. Сергеева. — М.: Изд-во ЦПИ при мехмате МГУ, 2006. — с. 133