4459. В выпуклом четырёхугольнике ABCD
известно, что \angle A+\angle D=120^{\circ}
и AB=BC=CD
. Докажите, что точка пересечения диагоналей равноудалена от вершин A
и D
.
Решение. Первый способ. Обозначим
\angle CAD=\alpha,~\angle ADB=\beta,~\angle BDC=\angle DBC=\gamma,~\angle ACB=\angle BAC=\delta.
Пусть O
— точка пересечения диагоналей четырёхугольника. Поскольку AOB
— внешний угол треугольников AOD
и BOC
(рис. 1), то
2\angle AOB=(\alpha+\beta)+(\gamma+\delta)=(\alpha+\delta)+(\beta+\gamma)=\angle BAD+\angle ADC=120^{\circ},
поэтому
\angle AOB=60^{\circ},~\angle BOC=120^{\circ}.
Пусть E
— точка пересечения прямых AB
и CD
. Тогда
\angle AED=180^{\circ}-(\angle BAD+\angle ADC)=180^{\circ}-120^{\circ}=60^{\circ}.
Сумма противоположных углов BEC
и BOC
четырёхугольника BECO
равна 180^{\circ}
, значит, около него можно описать окружность. Тогда
\angle BEO=\angle BCO=\delta=\angle EAC,
значит треугольник AEO
— равнобедренный, AO=OE
. Аналогично докажем, DO=OE
. Следовательно, OA=OD
.
Второй способ. Заметим (см. начало первого способа), что
\angle ABC+\angle BCD=240^{\circ},~\angle OBC+\angle OCB=60^{\circ}.
Поэтому \angle ABD+\angle ACD=180^{\circ}
.
На продолжении отрезка DB
за точку B
отложим отрезок BK=CA
(рис. 2). Тогда треугольник ABK
равен треугольнику DCA
по двум сторонам и углу между ними. Поэтому
AK=AD,~\angle KAD=\angle BAD+\angle CDA=120^{\circ}.
Значит, \angle ODA=30^{\circ}
. Аналогично, \angle OAD=30^{\circ}
. Следовательно, AO=OD
.
Автор: Берлов С. Л.
Источник: Олимпиада ФМЛ № 239 (Санкт-Петербург). — 1995, 8-9 классы
Источник: Берлов С. Л., Иванов С. В., Кохась К. П. Петербургские математические олимпиады. — СПб.—М.—Краснодар: Лань, 2003. — с. 56