4541. Окружность радиуса R
проходит через вершину A
равнобедренного треугольника ABC
, касается основания BC
в точке B
и пересекает боковую сторону AC
в точке D
. Найдите боковую сторону AB
, если \frac{AD}{DC}=k
.
Ответ. R\sqrt{\frac{4k+3}{k+1}}
.
Решение. Пусть \angle BAC=2\alpha
, DC=x
, AD=kx
. По теореме об угле между касательной и хордой \angle DBC=\angle BAC=2\alpha
. Тогда
\angle ABD=\angle ABC-\angle DBC=(90^{\circ}-\alpha)-2\alpha=90^{\circ}-3\alpha,
\angle ADB=\angle DBC+\angle ACB=2\alpha+(90^{\circ}-\alpha)=90^{\circ}+\alpha.
По теореме синусов
\frac{AD}{\sin\angle ABD}=\frac{AB}{\sin\angle ADB},~\frac{kx}{\sin(90^{\circ}-3\alpha)}=\frac{x(k+1)}{\sin(90^{\circ}+\alpha)},~\frac{kx}{\cos3\alpha}=\frac{x(k+1)}{\cos\alpha},
\frac{k}{\cos\alpha(4\cos^{2}\alpha-3)}=\frac{k+1}{\cos\alpha},~\frac{k}{4\cos^{2}\alpha-3}=k+1,
откуда находим, что \cos\alpha=\frac{1}{2}\sqrt{\frac{4k+3}{k+1}}
. Тогда по теореме синусов
AB=2R\sin\angle ADB=2R\sin(90^{\circ}+\alpha)=2R\cos\alpha=R\sqrt{\frac{4k+3}{k+1}}.
Источник: Вступительный экзамен в МФТИ. — 1973, билет 10, № 2
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 73-10-2, с. 165