4559. В равнобедренном треугольнике ABC
, у которого AB=BC
и угол B
равен \frac{\pi}{4}
, опущен перпендикуляр AD
на сторону BC
. В треугольники ABD
и ADC
вписаны полуокружности так, что их диаметры лежат соответственно на BD
и AD
. Найдите отношение площадей построенных полукругов.
Ответ. \tg^{2}\frac{3\pi}{16}
.
Решение. Пусть полуокружность радиуса R
с центром в точке Q
на стороне BC
треугольника ABC
касается боковой стороны AB
в точке P
, а окружность радиуса r
с центром O
на отрезке AD
касается основания AC
. Из равнобедренных прямоугольных треугольников BQP
и ABD
находим, что
BQ=PQ\sqrt{2}=R\sqrt{2},~BD=BQ+QD=R\sqrt{2}+R,~AB=BD\sqrt{2}=2R+R\sqrt{2},
поэтому
CD=BC-BD=AB-BD=(2R+R\sqrt{2})-(R\sqrt{2}+R)=R.
Центр окружности, вписанной в угол, лежит на биссектрисе этого угла, поэтому
\angle OCD=\frac{1}{2}\angle ACB=\frac{1}{2}\left(\frac{\pi}{2}-\frac{\pi}{8}\right)=\frac{3\pi}{16}.
Из прямоугольного треугольника OCD
находим, что
\frac{r}{R}=\frac{OD}{DC}=\tg\angle OCD=\tg\frac{3\pi}{16},
следовательно, отношение площадей кругов равно
\frac{\pi r^{2}}{\pi R^{2}}=\tg^{2}\frac{3\pi}{16}.
Источник: Вступительный экзамен в МФТИ. — 1967, билет 6, № 2
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 67-6-2, с. 112