4572. Основания равнобедренной трапеции равны a
и b
(a\gt b
), боковая сторона равна l
. Найдите радиус окружности, описанной около этой трапеции.
Ответ. \frac{l\sqrt{l^{2}+ab}}{\sqrt{4l^{2}-(a-b)^{2}}}
.
Решение. Пусть AD=a
и BC=b
— основания равнобедренной трапеции ABCD
, CH
— высота трапеции. Тогда
DH=\frac{1}{2}(AD-BC)=\frac{a-b}{2},~AH=\frac{1}{2}(AD+BC)=\frac{a+b}{2}.
Обозначим \angle CDA=\alpha
. Из прямоугольных треугольников CDH
и ACH
находим, что
CH=\sqrt{CD^{2}-DH^{2}}=\sqrt{l^{2}-\left(\frac{a-b}{2}\right)^{2}},~\sin\alpha=\frac{CH}{CD}=\frac{\sqrt{l^{2}-\left(\frac{a-b}{2}\right)^{2}}}{l},
AC=\sqrt{CH^{2}+AH^{2}}=\sqrt{l^{2}-\left(\frac{a-b}{2}\right)^{2}+\left(\frac{a-b}{2}\right)^{2}}=\sqrt{l^{2}+ab}.
Окружность радиуса R
, описанная около трапеции ABCD
— это окружность, описанная около треугольника ACD
. По теореме синусов
R=\frac{AC}{2\sin\alpha}=\frac{\sqrt{l^{2}+ab}}{\frac{2\sqrt{l^{2}-\left(\frac{a-b}{2}\right)^{2}}}{l}}=\frac{l\sqrt{l^{2}+ab}}{\sqrt{4l^{2}-(a-b)^{2}}}.
Источник: Вступительный экзамен в МФТИ. — 1968, билет 8, № 1
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 68-8-1, с. 127