4582. Найдите площадь треугольника, медианы которого равны 12, 15 и 21.
Ответ. 48\sqrt{6}
.
Указание. Докажите, что площадь треугольника, стороны которого равны медианам данного треугольника, равна \frac{3}{4}
площади данного треугольника.
Решение. Пусть площадь треугольника ABC
равна S
. Докажем, что площадь треугольника, стороны которого равны медианам треугольника ABC
, равна \frac{3}{4}S
.
Пусть M
— точка пересечения медиан треугольника ABC
, B_{1}
— середина стороны AC
. Отложим на продолжении медианы BB_{1}
за точку B_{1}
отрезок B_{1}K
, равный B_{1}M
. Поскольку AMCK
— параллелограмм, то KC=AM
. Поэтому стороны треугольника MCK
равны \frac{2}{3}
сторон треугольника, составленного из медиан треугольника ABC
.
Следовательно, искомый треугольник подобен треугольнику MCK
с коэффициентом \frac{3}{2}
, а его площадь равна \frac{9}{4}
площади треугольника MCK
, т. е.
S_{1}=\frac{9}{4}\cdot2\cdot\frac{1}{6}S=\frac{3}{4}S.
Площадь S_{1}
треугольника со сторонами 12, 15 и 21 найдём по формуле Герона:
S_{1}=\sqrt{24\cdot12\cdot9\cdot3}=36\sqrt{6}.
Следовательно,
S_{\triangle ABC}=S=\frac{4}{3}S_{1}=\frac{4}{3}\cdot36\sqrt{6}=48\sqrt{6}.
Источник: Вступительный экзамен в МФТИ. — 1963, билет 3, № 2
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 63-3-2, с. 98
Источник: Гордин Р. К. ЕГЭ 2010. Математика. Задача C4. Геометрия. Планиметрия. — М.: МЦНМО, 2010. — № 2.13, с. 17