4618. Найдите радиус окружности, внутри которой расположены две окружности радиуса r
и одна окружность радиуса R
так, что каждая окружность касается двух других.
Ответ. \frac{R(R+r+\sqrt{R^{2}+2rR})}{R-r+\sqrt{R^{2}+2rR}}
.
Решение. Пусть x
— искомый радиус окружности с центром O
, O_{1}
— центр окружности радиуса R
, O_{2}
и O_{3}
— центры окружностей радиуса r
, а M
— точка их касания.
Линия центров двух касающихся окружностей проходит через точку их касания, поэтому
OO_{1}=x-R,~O_{2}O_{3}=2r,~O_{1}O_{2}=O_{1}O_{3}=R+r.
Медиана O_{1}M
равнобедренного треугольника O_{1}O_{2}O_{3}
является его высотой. Из прямоугольных треугольников O_{1}MO_{2}
и OMO_{2}
находим, что
O_{1}M=\sqrt{O_{1}O_{2}^{2}-O_{2}M^{2}}=\sqrt{(R+r)^{2}-r^{2}}=\sqrt{R^{2}+2rR},
OM=\sqrt{OO_{2}^{2}-OM^{2}}=\sqrt{(x-r)^{2}-r^{2}}=\sqrt{x^{2}-2rx},
а так как O_{1}M=OO_{1}+OM
, то получаем уравнение
\sqrt{R^{2}+2rR}=x-R+\sqrt{x^{2}-2rx}~\Rightarrow~\sqrt{R^{2}+2rR}+R-x=\sqrt{x^{2}-2rx}~\Rightarrow
\Rightarrow~(\sqrt{R^{2}+2rR}+R-x)^{2}=x^{2}-2rx~\Rightarrow~x=\frac{R(R+r+\sqrt{R^{2}+2rR})}{R-r+\sqrt{R^{2}+2rR}}.
Источник: Вступительный экзамен в МФТИ. — 1960, билет 9, № 4
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 60-9-4, с. 80