5277. Дан квадрат ABCD
. На сторонах BC
и CD
взяты точки M
и N
соответственно, причём BM=\frac{1}{2}AB
и DN=\frac{1}{3}AB
. Докажите, что \angle MAN=45^{\circ}
.
Указание. Примените формулу \tg(\alpha+\beta)=\frac{\tg\alpha+\tg\beta}{1-\tg\alpha\tg\beta}
.
Решение. Обозначим \angle BAM=\alpha
, \angle DAN=\beta
. Из прямоугольных треугольников BAM
и DAN
находим, что
\tg\alpha=\frac{BM}{AB}=\frac{1}{2},~\tg\beta=\frac{DN}{AD}=\frac{DN}{AB}=\frac{1}{3}.
Поэтому
\tg\angle MAN=\tg(90^{\circ}-\alpha-\beta)=\ctg(\alpha+\beta)=\frac{1}{\tg(\alpha+\beta)}=
=\frac{1-\tg\alpha\tg\beta}{\tg\alpha+\tg\beta}=\frac{1-\frac{1}{2}\cdot\frac{1}{3}}{\frac{1}{2}+\frac{1}{3}}=1.
Следовательно, \angle MAN=45^{\circ}
.
Источник: Готман Э. Г., Скопец З. А. Решение геометрических задач аналитическим методом: Пособие для учащихся 9—10 кл. — М.: Просвещение, 1979. — № 57, с. 14