5304. Дан квадрат ABCD
. На прямых BD
и BC
взяты соответственно точки M
и N
, причём \overrightarrow{BM}=m\overrightarrow{BD}
и \overrightarrow{BN}=n\overrightarrow{BC}
. Докажите, что угол AMN
прямой тогда и только тогда, когда n=2m-1
.
Указание. Выразите векторы \overrightarrow{AM}
и \overrightarrow{NM}
через векторы \overrightarrow{BA}
и \overrightarrow{BC}
.
Решение. Обозначим \overrightarrow{BA}=\overrightarrow{a}
, \overrightarrow{BC}=\overrightarrow{b}
, |\overrightarrow{BA}|=|\overrightarrow{BC}|=d
. Тогда
\overrightarrow{NM}=-n\overrightarrow{BC}+m\overrightarrow{BD}=-n\overrightarrow{b}+m(\overrightarrow{a}+\overrightarrow{b})=m\overrightarrow{a}+(m-n)\overrightarrow{b},
\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=-\overrightarrow{a}+m(\overrightarrow{a}+\overrightarrow{b})=(m-1)\overrightarrow{a}+m\overrightarrow{b}.
Поскольку BA\perp BC
, скалярное произведение векторов \overrightarrow{a}
и \overrightarrow{b}
равно 0. Следовательно,
AM\perp NM~\Leftrightarrow~\overrightarrow{AM}\cdot\overrightarrow{NM}=0~\Leftrightarrow~((m-1)\overrightarrow{a}+m\overrightarrow{b})(m\overrightarrow{a}+(m-n)\overrightarrow{b})=0~\Leftrightarrow
\Leftrightarrow~m(m-1)\overrightarrow{a}^{2}+m(m-n)\overrightarrow{b}^{2}=0~\Leftrightarrow~m(m-1)d^{2}+m(m-n)d^{2}=0~\Leftrightarrow
\Leftrightarrow~m(m-1+m-n)=0~\Leftrightarrow~n=2m-1.
Источник: Готман Э. Г., Скопец З. А. Решение геометрических задач аналитическим методом: Пособие для учащихся 9—10 кл. — М.: Просвещение, 1979. — № 432, с. 67