5323. Около треугольника ABC
со сторонами BC=a
, AC=b
и AB=c
описана окружность радиуса R
и построена точка D
, симметричная центру O
окружности относительно прямой AB
. Выразите вектор \overrightarrow{CD}
через векторы \overrightarrow{OA}
, \overrightarrow{OB}
, \overrightarrow{OC}
. Докажите, что CD^{2}=R^{2}+a^{2}+b^{2}-c^{2}
.
Ответ. \overrightarrow{CD}=\overrightarrow{OA}+\overrightarrow{OB}-\overrightarrow{OC}
.
Указание. \overrightarrow{OD}=\overrightarrow{OA}+\overrightarrow{OB}
.
Решение. Возведя в квадрат векторное равенство \overrightarrow{CA}=\overrightarrow{OA}-\overrightarrow{OC}
, получим, что
b^{2}=\overrightarrow{CA}^{2}=(\overrightarrow{OA}-\overrightarrow{OC})^{2}=\overrightarrow{OA}^{2}+\overrightarrow{OC}^{2}-2\overrightarrow{OA}\cdot\overrightarrow{OC}=2R^{2}-2\overrightarrow{OA}\cdot\overrightarrow{OC},
откуда
2\overrightarrow{OA}\cdot\overrightarrow{OC}=2R^{2}-b^{2}.
Аналогично
2\overrightarrow{OB}\cdot\overrightarrow{OC}=2R^{2}-a^{2},~2\overrightarrow{OA}\cdot\overrightarrow{OB}=2R^{2}-c^{2},
а так как
\overrightarrow{CD}=\overrightarrow{CO}+\overrightarrow{OD}=\overrightarrow{CO}+\overrightarrow{OA}+\overrightarrow{OB},
то
CD^{2}=\overrightarrow{CD}^{2}=(\overrightarrow{CO}+\overrightarrow{OA}+\overrightarrow{OB})^{2}=
=CO^{2}+OA^{2}+OB^{2}+2\overrightarrow{OA}\cdot\overrightarrow{CO}+2\overrightarrow{OB}\cdot\overrightarrow{CO}+2\overrightarrow{OA}\cdot\overrightarrow{OB}=
=3R^{2}-2R^{2}+b^{2}-2R^{2}+a^{2}+2R^{2}-c^{2}=
=R^{2}+a^{2}+b^{2}-c^{2}.
Что и требовалось доказать.
Источник: Готман Э. Г., Скопец З. А. Решение геометрических задач аналитическим методом: Пособие для учащихся 9—10 кл. — М.: Просвещение, 1979. — № 475(а), с. 74