5532. Окружности радиусов 11 и 21 с центрами соответственно
O_{1}
и
O_{2}
касаются внешним образом в точке
C
,
O_{1}A
и
O_{2}B
— параллельные радиусы окружностей, причём
\angle AO_{1}O_{2}=60^{\circ}
. Найдите
AB
.
Ответ. 38 или 32.
Решение. Поскольку окружности касаются внешним образом, точка касания лежит на отрезке
O_{1}O_{2}
. Возможны два случая.
Первый случай. Точки
A
и
B
лежат по одну сторону от прямой
O_{1}O_{2}
. Через точку
A
проведём прямую, параллельную
O_{1}O_{2}
. Пусть
M
— точка её пересечения с радиусом
O_{2}B
. В треугольнике
AMB
известно, что
MA=O_{1}O_{2}=11+21=32,~MB=O_{2}B-O_{2}M=O_{2}B-O_{1}A=21-11=10,

\angle AMB=180^{\circ}-\angle AMO_{2}=\angle180^{\circ}-\angle AO_{1}O_{2}=180^{\circ}-60^{\circ}=120^{\circ}.

По теореме косинусов
AB^{2}=MA^{2}+MB^{2}-2MA\cdot MB\cos120^{\circ}=1024+100-2\cdot32\cdot10\cdot\left(-\frac{1}{2}\right)=

=4(256+25+80)=4\cdot361.

Следовательно,
AB=\sqrt{4\cdot361}=2\cdot19=38
.
Второй случай. Точки
A
и
B
лежат по разные стороны от прямой
O_{1}O_{2}
. Через точку
A
проведём прямую, параллельную
O_{1}O_{2}
. Пусть
M
— точка её пересечения с продолжением радиуса
O_{2}B
. В треугольнике
AMB
известно, что
MA=O_{1}O_{2}=11+21=32,~MB=O_{2}B+O_{2}M=O_{2}B+O_{1}A=21+11=32,

\angle AMB=\angle AO_{1}O_{2}=60^{\circ}.

Треугольник
AMB
равносторонний, следовательно,
AB=MB=32
.
Источник: ЕГЭ. — 2013