6993. В четырёхугольнике
ABCD
выполняются равенства
AB=BD,~\angle BAC=30^{\circ},~\angle BCA=31^{\circ},~\angle DBC=3^{\circ}.

Найдите
\angle BDC
.
Ответ.
59^{\circ}
.
Решение. Пусть
B_{1}
— точка, симметричная вершине
B
относительно прямой
AC
. Тогда
AB=AB_{1},~\angle BAB_{1}=2\angle BAC=60^{\circ}.

Значит, треугольник
ABB_{1}
равносторонний, поэтому
BB_{1}=BA
. Кроме того, из равнобедренного треугольника
BCB_{1}
с углом
62^{\circ}
при вершине находим, что
\angle B_{1}BC=\angle BB_{1}C=\frac{1}{2}(180^{\circ}-62^{\circ})=59^{\circ}.

На продолжении отрезка
B_{1}C
за точку
C
отметим точку
D_{1}
, для которой
BD_{1}=BB_{1}=BA
. Из равнобедренного треугольника
BD_{1}B_{1}
получаем, что
\angle BD_{1}B_{1}=\angle BB_{1}D_{1}=\angle BB_{1}C=59^{\circ}.

Значит,
\angle D_{1}BC=\angle BCB_{1}-\angle BD_{1}C=62^{\circ}-59^{\circ}=3^{\circ},

и треугольники
CBD_{1}
и
CBD
равны по двум сторонам и углу между ними. Следовательно,
\angle BDC=\angle BD_{1}C=59^{\circ}.

Источник: Соросовская олимпиада. — 1994, I, III тур, 2-й раунд, 9 класс