7432. Докажите, что сумма внутренних двугранных углов трёхгранного угла больше
180^{\circ}
и меньше
540^{\circ}
.
Решение. Рассмотрим трёхгранный угол
PABC
с вершиной
P
. Обозначим линейные углы его двугранных углов при рёбрах
PA
,
PB
и
PC
через
\alpha
,
\beta
и
\gamma
соответственно. Поскольку каждый из них меньше
180^{\circ}
, их сумма меньше
540^{\circ}
.
Из произвольной точки
M
, лежащей внутри данного трёхгранного угла, опустим перпендикуляры
MA_{1}
,
MB_{1}
и
MC_{1}
на грани
PBC
,
PAC
и
PAB
соответственно. Рассмотрим трёхгранный угол
MA_{1}B_{1}C_{1}
с вершиной
M
(полярный угол данного трёхгранного угла). Его плоские углы дополняют соответствующие двугранные углы до
180^{\circ}
, а так как сумма плоских углов любого трёхгранного угла меньше
360^{\circ}
, то
180^{\circ}-\alpha+180^{\circ}-\beta+180^{\circ}-\gamma\lt360^{\circ},

откуда
\alpha+\beta+\gamma\gt180^{\circ}.

Источник: Моденов П. С. Пособие по математике. — Ч. II. — М.: Изд-во МГУ, 1972. — с. 260
Источник: Шарыгин И. Ф. Геометрия. Стереометрия: Задачник для 10—11 кл. — М.: Дрофа, 1998. — № 182, с. 27