7477. В правильной шестиугольной призме ABCDEFA_{1}B_{1}C_{1}D_{1}E_{1}F_{1}
, все рёбра которой равны 1, найдите расстояние от точки B
до прямой AD_{1}
.
Ответ. \frac{2}{\sqrt{5}}
.
Решение. Расстояние от точки B
до прямой AD_{1}
равно высоте BH
треугольника ABD_{1}
.
Поскольку DB\perp AB
, а DB
— ортогональная проекция наклонной D_{1}B
на плоскость основания ABCDEF
, то по теореме о трёх перпендикулярах D_{1}B\perp AB
. Значит, треугольник ABD_{1}
— прямоугольный, а BH
— его высота, проведённая из вершины прямого угла.
Из прямоугольных треугольников BDD_{1}
и ADD_{1}
находим, что
BD_{1}=\sqrt{DD_{1}^{2}+BD^{2}}=\sqrt{1+(\sqrt{3})^{2}}=2,
AD_{1}=\sqrt{DD_{1}^{2}+AD^{2}}=\sqrt{1+4}=\sqrt{5}.
Записав двумя способами площадь треугольника ABD_{1}
, получим равенство \frac{1}{2}AD_{1}\cdot BH=\frac{1}{2}AB\cdot BD_{1}
, откуда
BH=\frac{AB\cdot BD_{1}}{AD_{1}}=\frac{1\cdot2}{\sqrt{5}}=\frac{2}{\sqrt{5}}.
Источник: Смирнов В. А. ЕГЭ 2010. Математика. Задача C2. Геометрия. Стереометрия / Под. ред. А. Л. Семёнова, И. В. Ященко. — М.: МЦНМО, 2010. — № 8, с. 31
Источник: Гордин Р. К. ЕГЭ 2017. Математика. Геометрия. Стереометрия. Задача 14 (профильный уровень). — М.: МЦНМО, 2017. — № 5(в), с. 35