7757. В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45^{\circ}
. Площадь сечения равна S
. Найдите объём призмы.
Ответ. \frac{1}{2}S\sqrt{S}\sqrt[{4}]{{6}}
.
Решение. Пусть указанная плоскость проходит через сторону AB
основания ABC
правильной треугольной призмы ABCA_{1}B_{1}C_{1}
и через вершину C_{1}
основания A_{1}B_{1}C_{1}
. Если CK
— высота равностороннего треугольника ABC
со стороной a
, то по теореме о трёх перпендикулярах C_{1}K\perp AB
, поэтому CKC_{1}
— линейный угол двугранного угла между плоскостями сечения и основания призмы. По условию \angle CKC_{1}=45^{\circ}
.
Поскольку треугольник ABC
— ортогональная проекция треугольника ABC_{1}
на плоскость основания призмы,
S_{\triangle ABC}=S_{\triangle ABC_{1}}\cos\angle CKC_{1}=\frac{S}{\sqrt{2}},
а так как S_{\triangle ABC}=\frac{a^{2}\sqrt{3}}{4}
, то из уравнения \frac{a^{2}\sqrt{3}}{4}=\frac{S}{\sqrt{2}}
, находим, что a=\frac{2\sqrt{S}}{\sqrt[{4}]{{6}}}
. Далее имеем:
CK=\frac{a\sqrt{3}}{2}=\frac{\sqrt{3S}}{\sqrt[{4}]{{6}}},~CC_{1}=CK=\frac{\sqrt{3S}}{\sqrt[{4}]{{6}}},
V_{ABCA_{1}B_{1}C_{1}}=S_{\triangle ABC}\cdot CC_{1}=\frac{S}{\sqrt{2}}\cdot\frac{\sqrt{3S}}{\sqrt[{4}]{{6}}}=\frac{1}{2}S\sqrt{S}\cdot\sqrt[{4}]{{6}}.
Источник: Сборник задач по математике для поступающих во втузы / Под ред. М. И. Сканави. — 5-е изд. — М.: Высшая школа, 1988. — № 11.157