8458. Центр шара единичного радиуса расположен на ребре двугранного угла, равного \alpha
. Найдите радиус шара, объём которого равен объёму части данного шара, находящейся внутри двугранного угла.
Ответ. \sqrt[{3}]{{\frac{\alpha}{2\pi}}}
.
Решение. Пусть v
— объём части шара, находящейся внутри данного двугранного угла, V=\frac{4}{3}\pi R^{3}
— объём данного шара. Тогда
\frac{v}{\alpha}=\frac{V}{2\pi},
откуда находим, что
v=\frac{\alpha V}{2\pi}=\frac{\alpha\cdot\frac{4}{3}\pi}{2\pi}=\frac{2}{3}\alpha.
Если r
— радиус шара объёма v
, то v=\frac{4}{3}\pi r^{3}
. Следовательно,
r=\sqrt[{3}]{{\frac{3v}{4\pi}}}=\sqrt[{3}]{{\frac{2\alpha}{4\pi}}}=\sqrt[{3}]{{\frac{\alpha}{2\pi}}}.
Источник: Шарыгин И. Ф. Геометрия: Учебник для 10—11 кл. общеобразовательных учебных заведений. — М.: Дрофа, 1999. — № 2, с. 122