8484. Найдите объём правильной четырёхугольной пирамиды с боковым ребром b
и радиусом R
описанной сферы.
Ответ. \frac{b^{4}(4R^{2}-b^{2})}{12R^{3}}
.
Решение. Пусть O
— центр сферы радиуса R
, описанной около правильной четырёхугольной пирамиды PABCD
с боковыми рёбрами PA=PB=PC=PD=b
. Точка O
лежит на прямой PM
, где M
— центр основания ABCD
, а так как точки A
и P
лежат на сфере, то O
лежит также на серединном перпендикуляре к стороне AP
треугольника APM
.
Обозначим AB=BC=CD=AD=a
, \angle APM=\varphi
. Если K
— середина AP
, то
\cos\varphi=\frac{PK}{PO}=\frac{\frac{b}{2}}{R}=\frac{b}{2R},~PM=AP\cos\varphi=b\cdot\frac{b}{2R}=\frac{b^{2}}{2R},
\frac{a}{\sqrt{2}}=AM=AP\sin\varphi=b\sqrt{1-\cos^{2}\varphi}=b\sqrt{1-\frac{b^{2}}{4R^{2}}}=\frac{b\sqrt{4R^{2}-b^{2}}}{2R},
a=b\sqrt{2}\cdot\frac{\sqrt{4R^{2}-b^{2}}}{2R}.
Следовательно,
V_{PABCD}=\frac{1}{3}S_{ABCD}\cdot PM=\frac{1}{3}a^{2}\cdot PM=\frac{1}{3}\left(b\sqrt{2}\cdot\frac{\sqrt{4R^{2}-b^{2}}}{2R}\right)^{2}\cdot\frac{b^{2}}{2R}=\frac{b^{4}(4R^{2}-b^{2})}{12R^{3}}.
Источник: Шарыгин И. Ф. Геометрия: Учебник для 10—11 кл. общеобразовательных учебных заведений. — М.: Дрофа, 1999. — № 8, с. 124