8950. В прямоугольном параллелепипеде
ABCDA_{1}B_{1}C_{1}D_{1}
четыре числа — длины рёбер и диагонали
AC_{1}
— образуют арифметическую прогрессию с положительной разностью
d
, причём
AA_{1}\lt AD\lt AB
. Две внешне касающиеся друг друга сферы одинакового неизвестного радиуса
R
расположены так, что их центры лежат внутри параллелепипеда, причём первая сфера касается граней
ABB_{1}A_{1}
,
ADD_{1}A_{1}
,
ABCD
, а вторая — граней
BCC_{1}B_{1}
,
CDD_{1}C_{1}
,
A_{1}B_{1}C_{1}D_{1}
. Найдите: а) длины рёбер параллелепипеда; б) угол между прямыми
CD_{1}
и
AC_{1}
; в) радиус
R
.
Ответ. а)
AA_{1}=d\sqrt{2}
,
AD=d(\sqrt{2}+1)
,
AB=d(\sqrt{2}+2)
;
б)
\arccos\frac{2+2\sqrt{2}}{\sqrt{34+23\sqrt{2}}}
;
в)
R=d\left(\frac{3+3\sqrt{2}-\sqrt{5+6\sqrt{2}}}{4}\right)
.
Источник: Вступительный экзамен в МФТИ. — 2007, билет 4, № 6