9199. Дана правильная четырёхугольная призма ABCDA_{1}B_{1}C_{1}D_{1}
с основаниями ABCD
и A_{1}B_{1}C_{1}D_{1}
. Точка M
— середина ребра B_{1}C_{1}
. Прямые CA_{1}
и BM
перпендикулярны.
а) Докажите, что диагональ основания призмы вдвое больше бокового ребра.
б) Найдите угол прямой CA_{1}
с плоскостью BCC_{1}
.
Ответ. \arctg\sqrt{\frac{2}{3}}
.
Решение. а) Поскольку A_{1}B_{1}
— перпендикуляр к плоскости BB_{1}C_{1}C
, отрезок B_{1}C
— ортогональная проекция наклонной A_{1}C
на эту плоскость. По условию A_{1}C\perp BM
. Тогда по теореме о трёх перпендикулярах BM\perp B_{1}C
.
Обозначим AB=BC=a
, BB_{1}=h
, \angle MBB_{1}=\angle CB_{1}C_{1}=\alpha
. Из прямоугольных треугольников MBB_{1}
и CB_{1}C_{1}
получаем, что
\tg\alpha=\frac{MB_{1}}{BB_{1}}=\frac{a}{2h},~\tg\alpha=\frac{CC_{1}}{B_{1}C_{1}}=\frac{h}{a}.
Из равенства \frac{a}{2h}=\frac{h}{a}
находим, что h=\frac{a}{\sqrt{2}}
. Следовательно,
\frac{AC}{BB_{1}}=\frac{a\sqrt{2}}{\frac{a}{\sqrt{2}}}=2.
б) Поскольку B_{1}C
— ортогональная проекция наклонной A_{1}C
на плоскость BB_{1}C_{1}C
, угол наклонной с этой плоскостью — это угол A_{1}CB_{1}
.
В прямоугольном треугольнике A_{1}CB_{1}
известно, что
A_{1}B_{1}=a,~B_{1}C=\sqrt{BC^{2}+BB_{1}^{2}}=\sqrt{a^{2}+\frac{a^{2}}{2}}=a\sqrt{\frac{3}{2}}.
Следовательно,
\tg\angle A_{1}CB_{1}=\frac{A_{1}B_{1}}{B_{1}C}=\frac{a}{a\sqrt{\frac{3}{2}}}=\sqrt{\frac{2}{3}}.
Источник: Диагностические и тренировочные задачи ЕГЭ. — 2015
Источник: Гордин Р. К. ЕГЭ 2017. Математика. Геометрия. Стереометрия. Задача 14 (профильный уровень). — М.: МЦНМО, 2017. — № 5.8, с. 46