10168. Окружности \alpha
, \beta
, \gamma
и \delta
касаются данной окружности в вершинах A
, B
, C
и D
выпуклого четырёхугольника ABCD
. Пусть t_{\alpha\beta}
— длина общей касательной к окружностям \alpha
и \beta
(внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее); t_{\beta\gamma}
, t_{\gamma\delta}
и т. д. определяются аналогично. Докажите, что
t_{\alpha\beta}t_{\gamma\delta}+t_{\beta\gamma}t_{\delta\alpha}=t_{\alpha\gamma}t_{\beta\delta}
(обобщённая теорема Птолемея).
Указание. См. задачи 4895 и 130.
Решение. Пусть радиус данной окружности равен R
, r_{a}
, r_{b}
, r_{c}
и r_{d}
— радиусы окружностей \alpha
, \beta
, \gamma
и \delta
соответственно. Пусть a=\sqrt{R\pm r_{a}}
, причём знак плюс берётся в случае внешнего касания, а знак минус — в случае внутреннего. Аналогично определяются числа b
, c
и d
.
Тогда t_{\alpha\beta}=\frac{ab\cdot AB}{R}
(см. задачу 4895). Аналогично,
t_{\gamma\delta}=\frac{cd\cdot CD}{R},~t_{\beta\gamma}=\frac{bc\cdot BC}{R},~t_{\delta\alpha}=\frac{da\cdot AD}{R},~t_{\alpha\gamma}=\frac{ac\cdot AC}{R},~t_{\beta\delta}=\frac{bd\cdot BD}{R}.
Применяя теорему Птолемея (см. задачу 130), получим, что
t_{\alpha\beta}t_{\gamma\delta}+t_{\beta\gamma}t_{\delta\alpha}=\frac{ab\cdot AB}{R}\cdot\frac{cd\cdot CD}{R}+\frac{bc\cdot BC}{R}\cdot\frac{da\cdot AD}{R}=
=\frac{abcd\cdot AB\cdot CD}{R^{2}}+\frac{abcd\cdot BC\cdot AD}{R^{2}}=\frac{abcd}{R^{2}}(AB\cdot CD+BC\cdot AD)=
=\frac{abcd}{R^{2}}\cdot AC\cdot BD=\frac{ac\cdot AC}{R}\cdot\frac{bd\cdot BD}{R}=t_{\alpha\gamma}t_{\beta\delta}.
Что и требовалось доказать.
Источник: Прасолов В. В. Задачи по планиметрии. — Ч. 1. — М.: Наука, 1991. — № 6.43, с. 155
Источник: Прасолов В. В. Задачи по планиметрии. — 6-е изд. — М.: МЦНМО, 2007. — № 6.47, с. 156
Источник: Шарыгин И. Ф. Геометрия: 9—11 кл.: От учебной задачи к творческой: Учебное пособие. — М.: Дрофа, 1996. — № 536, с. 65