10766. Дан прямоугольный треугольника ABC
с прямым углом при вершине C
. Известно, что AC=1
, BC=3
. На сторонах BC
и AB
как на гипотенузах во внешнюю сторону построены равнобедренные прямоугольные треугольники BKC
и BDA
. Найдите отрезок KD
.
Ответ. \frac{5}{\sqrt{2}}
.
Решение. Первый способ. Обозначим \angle ABC=\beta
. Тогда
\angle DBK=\angle DBA+\angle ABC+\angle CBK=45^{\circ}+\beta+45^{\circ}=90^{\circ}+\beta,
поэтому
\cos\angle DBK=\cos(90^{\circ}+\beta)=-\sin\beta=-\frac{AC}{AB}=-\frac{1}{\sqrt{10}}.
Тогда по теореме косинусов из треугольника DBK
находим, что
DK=\sqrt{BD^{2}+BK^{2}-2BD\cdot BK\cos\angle DBK}=
=\sqrt{5+\frac{9}{2}+2\cdot\sqrt{5}\frac{\sqrt{2}}{2}\cdot\frac{1}{\sqrt{10}}}=\frac{5}{\sqrt{2}}.
Второй способ. По теореме Пифагора находим, что BD=AD=\sqrt{5}
и BK=CK=\frac{3}{\sqrt{2}}
.
Из точек C
и D
отрезок AB
виден под прямым углом, значит, ADBC
— вписанный четырёхугольник. Вписанные углы BCD
и BAD
опираются на равные хорды, поэтому CD
— биссектриса прямого угла ACB
. Тогда
\angle DCK=\angle DCB+\angle BCK=45^{\circ}+45^{\circ}=90^{\circ}.
По теореме Птолемея (см. задачу 130)
AB\cdot CD=AD\cdot BC+AC\cdot BD,~\mbox{или}~CD\sqrt{10}=\sqrt{5}\cdot3+1\cdot\sqrt{5},
откуда находим, что CD=\frac{4}{\sqrt{2}}
. Следовательно, по теореме Пифагора
DK=\sqrt{CD^{2}+CK^{2}}=\sqrt{\left(\frac{4}{\sqrt{2}}\right)^{2}+\left(\frac{3}{\sqrt{2}}\right)^{2}}=\frac{5}{\sqrt{2}}.
Источник: Мерзляк А. Г., Поляков В. М. Геометрия. 8 класс. Углублённый уровень. — М.: Вентана-Граф, 2019. — № 20.47, с. 150