11070. Пусть m_{a}
, m_{b}
и m_{c}
— медианы остроугольного треугольника, h_{a}
, h_{b}
и h_{c}
— его соответствующие высоты, а r
и R
— радиусы вписанной и описанной окружностей соответственно. Докажите, что
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\leqslant1+\frac{R}{r}.
Решение. Пусть площадь остроугольного треугольника ABC
со сторонами BC=a
, AC=b
и AB=c
равна S
, O
— центр описанной окружности, точки A_{1}
, B_{1}
и C_{1}
— середины сторон BC
, AC
и AB
соответственно.
По неравенству треугольника
m_{a}\leqslant R+OA_{1},~m_{b}\leqslant R+OB_{1},~m_{c}\leqslant R+OC_{1}.
Тогда
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\leqslant\frac{R+OA_{1}}{h_{a}}+\frac{R+OB_{1}}{h_{b}}+\frac{R+OC_{1}}{h_{c}}=
=R\left(\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}\right)+\frac{OA_{1}}{h_{a}}+\frac{OB_{1}}{h_{b}}+\frac{OC_{1}}{h_{c}}.
При этом
\frac{1}{h_{a}}+\frac{1}{h_{b}}+\frac{1}{h_{c}}=\frac{1}{r}
(см. задачу 3239) и
OA_{1}=\frac{2S_{\triangle BOC}}{a},~OB_{1}=\frac{2S_{\triangle AOC}}{b},~OC_{1}=\frac{2S_{\triangle AOB}}{c}.
Значит,
\frac{OA_{1}}{h_{a}}+\frac{OB_{1}}{h_{b}}+\frac{OC_{1}}{h_{c}}=\frac{2S_{\triangle BOC}}{ah_{a}}+\frac{2S_{\triangle AOC}}{bh_{b}}+\frac{2S_{\triangle AOB}}{ch_{c}}=
=\frac{2S_{\triangle BOC}}{2S}+\frac{2S_{\triangle AOC}}{2S}+\frac{2S_{\triangle AOB}}{2S}=\frac{S_{\triangle BOC}+S_{\triangle AOC}+S_{\triangle AOB}}{S}=\frac{S}{S}=1
(так как треугольник ABC
остроугольный, и поэтому точка O
лежит внутри него). Следовательно,
\frac{m_{a}}{h_{a}}+\frac{m_{b}}{h_{b}}+\frac{m_{c}}{h_{c}}\leqslant\frac{R}{r}+1.
Что и требовалось доказать.
Автор: Милошевич Д. М.
Источник: Журнал «Квант». — 1983, № 7, с. 43, М811; 1983, № 10, с. 46-47, М811
Источник: Задачник «Кванта». — М811
Источник: Прасолов В. В. Задачи по планиметрии. — 6-е изд. — М.: МЦНМО, 2007. — № 10.77, с. 258
Источник: Кушнир И. А. Геометрия. Поиск и вдохновение. — М.: МЦНМО, 2013. — с. 408