13030. Углы при вершинах A
, B
и C
треугольника ABC
равны \alpha
, \beta
и \gamma
соответственно, r
и R
— радиусы вписанной и описанной окружностей. Докажите, что
\ctg\alpha+\ctg\beta+\ctg\gamma\leqslant\sqrt{3}\left(\frac{R}{2r}\right)^{2}.
Решение. Обозначим BC=a
, AC=b
и AB=c
, S
— площадь треугольника, p
— полупериметр. Воспользовавшись равенством
\ctg\alpha+\ctg\beta+\ctg\gamma=\frac{a^{2}+b^{2}+c^{2}}{4S}
(см. задачу 3248а) и неравенствами
a^{2}+b^{2}+c^{2}\leqslant9R^{2}~\mbox{и}~p\geqslant3r\sqrt{3}
(см. задачи 3968 и 3227а), получим
\ctg\alpha+\ctg\beta+\ctg\gamma=\frac{a^{2}+b^{2}+c^{2}}{4S}\leqslant\frac{9R^{2}}{4S}=
=\frac{9R^{2}}{4pr}\leqslant\frac{9R^{2}}{4r\cdot3r\sqrt{3}}=\sqrt{3}\left(\frac{R}{2r}\right)^{2}.
Что и требовалось доказать.
Источник: Журнал «Crux Mathematicorum». — 2021, № 10, задача 4646, с. 518