13096. Гипотенуза прямоугольного треугольника равна m
, радиус вписанной окружности равен r
. Найдите катеты.
При каком соотношении между r
и m
задача имеет решение?
Ответ. r\pm\frac{1}{2}\sqrt{m^{2}-4mr-4r^{2}}
; r\leqslant\frac{m(\sqrt{2}-1)}{2}
.
Решение. Пусть катеты треугольника равны x
и y
. Тогда r=\frac{x+y-m}{2}
(см. задачу 217), откуда x+y=2r+m
. По теореме Пифагора x^{2}+y^{2}=m^{2}
. Из системы
\syst{x+y=2r+m\\x^{2}+y^{2}=m^{2}\\}
находим, что
x=r+\frac{1}{2}(m+\sqrt{m^{2}-4mr-4r^{2}}),~y=r+\frac{1}{2}(m-\sqrt{m^{2}-4mr-4r^{2}})
или
x=r+\frac{1}{2}(m-\sqrt{m^{2}-4mr-4r^{2}}),~y=r+\frac{1}{2}(m+\sqrt{m^{2}-4mr-4r^{2}}).
Задача имеет решение, если m^{2}-4mr-4r^{2}\geqslant0
, т. е. при r\leqslant\frac{m(\sqrt{2}-1)}{2}
.
Источник: Сборник задач по математике для поступающих во втузы / Под ред. М. И. Сканави. — 5-е изд. — М.: Высшая школа, 1988. — № 10.362, с. 183