13305. Окружность радиуса r
вписана в треугольник ABC
, P
— точка касания окружности со стороной AB
, точка M
— середина стороны AB
.
а) Докажите, что MP=\frac{|AC-CB|}{2}
.
б) Найдите углы треугольника ABC
, если MC=MA
, и MP=\frac{r}{2}
.
Ответ. б) \angle A=\arccos\frac{4}{5}
, \angle B=\arccos\frac{3}{5}
, \angle C=90^{\circ}
.
Решение. а) Рассмотрим случай, когда AC\geqslant BC
. Пусть N
и K
— точки касания окружности со сторонами AC
и BC
соответственно. Тогда
CN=CK,~BK=BP,~AN=AP.
Заметим, что
AC-BC=AN-BK=AP-BP=
=AM+MP-(BM-MP)=2MP,
откуда
MP=\frac{AC-BC}{2}.
Что и требовалось доказать.
В случае AC\lt BC
решение аналогично.
б) По условию AM=MC
, поэтому \angle C=90^{\circ}
(см. задачу 1188).
Пусть O
— центр окружности. Тогда четырёхугольник CNOK
— квадрат, поскольку все его углы прямые и соседние стороны равны. При этом CK=ON=r
. Обозначим BK=x
. Тогда
BM=AM=x+\frac{r}{2}~\Rightarrow~AP=AN=x+\frac{r}{2}+\frac{r}{2}=x+r.
По теореме Пифагора BC^{2}+AC^{2}=AB^{2}
, или
(x+r)^{2}+(x+2r)^{2}=(2x+r)^{2}~\Leftrightarrow~x^{2}-xr-2r^{2}=0~\Leftrightarrow~(x-2r)(x+r)=0,
откуда x=2r
. Тогда
BC=x+r=3r,~AC=x+2r=4r,~AB=2x+r=5r.
Следовательно,
\angle C=90^{\circ},~\angle A=\arccos\frac{4}{5},~\angle B=\arccos\frac{3}{5}.
Источник: ЕГЭ. — 2022, март, досрочный экзамен, задача 16