14422. Найдите объём и боковую поверхность правильной треугольной пирамиды, если сторона её основания равна a
, а плоскость, проходящая через сторону основания и середину высоты пирамиды, наклонена к плоскости основания под углом \varphi
.
Ответ. \frac{a^{3}\tg\varphi}{12}
, \frac{a^{2}\sqrt{3(1+4\tg^{2}\varphi)}}{4}
.
Решение. Пусть K
— середина высоты DH
данной правильной пирамиды ABCD
с основанием ABC
, M
— середина стороны AB
. Тогда KMH
— линейный угол двугранного угла пирамиды при ребре AB
, поэтому \angle KMH=\varphi
.
Из прямоугольного треугольника KMH
находим, что
KH=MH\tg\varphi=\frac{a\sqrt{3}}{6}\tg\varphi,
поэтому
DH=2KH=\frac{a\sqrt{3}}{3}\tg\varphi.
Следовательно,
V=\frac{1}{3}S_{\triangle ABC}\cdot DH=\frac{1}{3}\cdot\frac{a^{2}\sqrt{3}}{4}\cdot\frac{a\sqrt{3}}{3}\tg\varphi=\frac{a^{3}\tg\varphi}{12}.
Пусть боковая грань пирамиды наклонена к плоскости основания под углом \beta
, т. е. \angle DMH=\beta
. Тогда
\tg\beta=\frac{DH}{HM}=2\cdot\frac{KH}{HM}=2\tg\varphi,
поэтому
\cos\beta=\frac{1}{\sqrt{1+\tg^{2}\beta}}=\frac{1}{\sqrt{1+4\tg^{2}\varphi}}.
Пусть S
— боковая поверхность пирамиды. Тогда (см. задачу 8093)
S=\frac{S_{\triangle ABC}}{\cos\beta}=\frac{\frac{a^{2}\sqrt{3}}{4}}{\frac{1}{\sqrt{1+4\tg^{2}\varphi}}}=\frac{a^{2}\sqrt{3(1+4\tg^{2}\varphi)}}{4}.
Источник: Сборник задач по математике для поступающих во втузы / Под ред. М. И. Сканави. — 5-е изд. — М.: Высшая школа, 1988. — № 12.203, с. 226