1560. Основание равнобедренного треугольника равно 12, а боковая сторона равна 18. К боковым сторонам треугольника проведены высоты. Найдите отрезок, концы которого совпадают с основаниями высот.
Ответ. \frac{28}{3}
.
Указание. Докажите, что искомый отрезок отсекает от данного треугольника подобный ему треугольник и коэффициент подобия равен косинусу угла при вершине (см. задачу 19).
Решение. Первый способ. Пусть BM
и CK
— высоты треугольника ABC
, AB=AC=18
, BC=12
. Этот треугольник — остроугольный. Поэтому точки M
и K
принадлежат сторонам AC
и AB
. Треугольники KAM
и BAC
подобны с коэффициентом
\frac{AM}{AC}=\frac{AM}{AB}=\cos\angle A
(см. задачу 19). Пусть AP
— третья высота треугольника ABC
. Тогда
\sin\frac{1}{2}\angle A=\frac{BP}{AB}=\frac{1}{3},~\cos\frac{1}{2}\angle A=\frac{2\sqrt{2}}{3},
\cos\angle A=\cos^{2}\frac{1}{2}\angle A-\sin^{2}\frac{1}{2}\angle A=\left(\frac{2\sqrt{2}}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}=\frac{7}{9}.
Поэтому KM=\frac{7}{9}BC=\frac{28}{3}
.
Второй способ. Пусть AP
— третья высота треугольника ABC
. Тогда
AP=\sqrt{AB^{2}-BP^{2}}=\sqrt{18^{2}-6^{2}}=12\sqrt{2},
2S_{\triangle ABC}=BC\cdot AP=AC\cdot BM.
Отсюда находим, что
BM=\frac{BC\cdot AP}{AC}=\frac{12\cdot12\sqrt{2}}{18}=8\sqrt{2},
AM=\sqrt{AB^{2}-BM^{2}}=\sqrt{324-128}=14.
Из подобия получаем, что \frac{KM}{BC}=\frac{AM}{AC}
. Следовательно,
KM=\frac{BC\cdot AM}{AC}=\frac{12\cdot14}{18}=\frac{28}{3}.
Источник: Сборник задач по математике для поступающих во втузы / Под ред. М. И. Сканави. — 5-е изд. — М.: Высшая школа, 1988. — № 10.240, с. 174