2279. Дан правильный треугольник ABC
и произвольная точка D
. Точки A_{1}
, B_{1}
и C_{1}
— центры окружностей, вписанных в треугольники BCD
, CAD
и ABD
соответственно. Докажите, что перпендикуляры, опущенные из вершин A
, B
и C
на прямые соответственно B_{1}C_{1}
, A_{1}C_{1}
и A_{1}B_{1}
, пересекаются в одной точке.
Решение. Пусть окружности, вписанные в треугольники BCD
, CAD
и ABD
, касаются сторон BC
, AC
и AB
в точках A_{2}
, B_{2}
и C_{2}
соответственно. Тогда прямые, проходящие через точки A_{2}
, B_{2}
и C_{2}
перпендикулярно прямым соответственно BC
, AC
и AB
, совпадают с прямыми A_{1}A_{2}
, B_{1}B_{2}
и C_{1}C_{2}
.
Обозначим AB=BC=AC=a
, AD=x
, BD=y
, CD=z
. Тогда
AC_{2}=\frac{AB+AD-BD}{2}=\frac{a+x-y}{2},~C_{2}B=\frac{a+y-x}{2},
BA_{2}=\frac{a+y-z}{2},~A_{2}C=\frac{a+z-y}{2},~CB_{2}=\frac{a+z-x}{2},~B_{2}A=\frac{a+x-z}{2}
(см. задачу 219), поэтому
AC_{2}^{2}-C_{2}B^{2}+BA_{2}^{2}-A_{2}C^{2}+CB_{2}^{2}-B_{2}A^{2}=
=\left(\frac{a+x-y}{2}\right)^{2}-\left(\frac{a+y-x}{2}\right)^{2}+\left(\frac{a+y-z}{2}\right)^{2}-\left(\frac{a+z-y}{2}\right)^{2}+
+\left(\frac{a+z-x}{2}\right)^{2}-\left(\frac{a+x-z}{2}\right)^{2}=
=\frac{1}{4}((a+x-y)^{2}-(a+y-x)^{2}+(a+y-z)^{2}-(a+z-y)^{2}+(a+z-x)^{2}-(a+x-z)^{2})=
=\frac{1}{4}((a+x-y-a-y+x)(a+x-y+a+y-x)+(a+y-z-a-z+y)(a+y-z+a+z-y)+
+(a+z-x-a-x+z)(a+z-x+a+x-z))=
=\frac{1}{4}((2x-2y)2a+(2y-2z)2a+(2z-2x)2a)=a(x-y+y-z+z-x)=0.
Тогда по теореме Карно прямые, проходящие через точки A_{1}
, B_{1}
и C_{1}
перпендикулярно прямым соответственно BC
, AC
и AB
, пересекаются в одной точке. Следовательно, перпендикуляры, опущенные из вершин A
, B
и C
на прямые соответственно B_{1}C_{1}
, A_{1}C_{1}
и A_{1}B_{1}
, также пересекаются в одной точке.
Источник: Шарыгин И. Ф. Задачи по геометрии. Планиметрия. — 2-е изд. — М.: Наука, 1986. — № 17, с. 37
Источник: Прасолов В. В. Задачи по планиметрии. — 6-е изд. — М.: МЦНМО, 2007. — № 7.47, с. 188