3096. В равнобедренном треугольнике ABC
(AB=BC
) проведены высоты AA_{1}
, BB_{1}
и CC_{1}
. Найдите отношение площади треугольника A_{1}B_{1}C_{1}
к площади треугольника ABC
, если \frac{AB}{A_{1}B_{1}}=\sqrt{3}
.
Ответ. \frac{2}{9}
.
Указание. \cos\angle ACB=\frac{1}{\sqrt{3}}
.
Решение. Обозначим \angle BCA=\angle BAC=\alpha
. Треугольник A_{1}CB_{1}
подобен треугольнику ABC
с коэффициентом \frac{A_{1}B_{1}}{AB}=\frac{1}{\sqrt{3}}
(см. задачу 19), поэтому
\cos\alpha=\cos\angle BAC=\frac{A_{1}C}{AC}=\frac{1}{\sqrt{3}},~S_{\triangle A_{1}CB_{1}}=S_{\triangle C_{1}AB_{1}}=\frac{1}{3}S_{\triangle ABC}.
Треугольник A_{1}BC_{1}
подобен треугольнику ABC
с коэффициентом
\frac{BA_{1}}{BA}=\cos\angle A_{1}BA=\cos(180^{\circ}-2\alpha)=-\cos2\alpha=\sin^{2}\alpha-\cos^{2}\alpha=\frac{1}{3}.
Поэтому S_{\triangle A_{1}BC_{1}}=\frac{1}{9}S_{\triangle ABC}
. Следовательно,
S_{\triangle A_{1}B_{1}C_{1}}=S_{\triangle ABC}-2S_{\triangle A_{1}CB_{1}}-S_{\triangle A_{1}BC_{1}}=
=S_{\triangle ABC}-\frac{2}{3}S_{\triangle ABC}-\frac{1}{9}S_{\triangle ABC}=\frac{2}{9}S_{\triangle ABC}.
Источник: Вступительный экзамен в МФТИ. — 1970, № 3, билет 8
Источник: Сборник методических материалов письменных испытаний по математике и физике абитуриентов Московского Физтеха (1947—2006 гг.). Математика / Сост. Д. А. Александров, И. Г. Почернин, И. Г. Проценко, И. Е. Сидорова, В. Б. Трушин, И. Г. Шомполов. Под ред. И. Г. Шомполова. — М.: МФТИ, 2007. — № 70-3-8, с. 142