3256. Докажите, что если углы треугольника равны \alpha
, \beta
и \gamma
, то
\cos\alpha\cos\beta+\cos\beta\cos\gamma+\cos\alpha\cos\gamma\leqslant\frac{3}{4}.
Указание. Докажите неравенства
\cos\alpha+\cos\beta+\cos\gamma\leqslant\frac{3}{2},~\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma\geqslant\frac{3}{4}.
Решение. Из равенства
(\cos\alpha+\cos\beta+\cos\gamma)^{2}=\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma+
+2\cos\alpha\cos\beta+2\cos\beta\cos\gamma+2\cos\alpha\cos\gamma
следует, что
2(\cos\alpha\cos\beta+\cos\beta\cos\gamma+\cos\alpha\cos\gamma)=
=(\cos\alpha+\cos\beta+\cos\gamma)^{2}-\cos^{2}\alpha-\cos^{2}\beta-\cos^{2}\gamma,
а так как \cos\alpha+\cos\beta+\cos\gamma\leqslant\frac{3}{2}
(см. задачу 4157) и \cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma\geqslant\frac{3}{4}
(см. задачу 3255), то
\cos\alpha\cos\beta+\cos\beta\cos\gamma+\cos\alpha\cos\gamma=
=\frac{1}{2}((\cos\alpha+\cos\beta+\cos\gamma)^{2}-\cos^{2}\alpha-\cos^{2}\beta-\cos^{2}\gamma)\leqslant\frac{1}{2}\left(\frac{9}{4}-\frac{3}{4}\right)=\frac{3}{4}.
Источник: Прасолов В. В. Задачи по планиметрии. — Ч. 1. — М.: Наука, 1991. — № 10.43, с. 263
Источник: Прасолов В. В. Задачи по планиметрии. — 6-е изд. — М.: МЦНМО, 2007. — № 10.45, с. 255